Thermodynamics of Nanobody Binding to Lactose Permease.

نویسندگان

  • Parameswaran Hariharan
  • Magnus Andersson
  • Xiaoxu Jiang
  • Els Pardon
  • Jan Steyaert
  • H Ronald Kaback
  • Lan Guan
چکیده

Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increases the affinity for galactoside. The findings presented here show that both enthalpy and entropy contribute favorably to binding of the Nbs to wild-type (WT) LacY and that binding of Nb to double-Trp mutant G46W/G262W is driven by a greater enthalpy at an entropic penalty. Thermodynamic analyses support the interpretation that WT LacY is stabilized in outward-facing conformations like the double-Trp mutant with closure of the water-filled cytoplasmic cavity through conformational selection. The LacY conformational transition required for ligand binding is reflected by a favorable entropy increase. Molecular dynamics simulations further suggest that the entropy increase likely stems from release of immobilized water molecules primarily from the cytoplasmic cavity upon closure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc.

In a variety of bacteria, the phosphotransferase protein IIA(Glc) plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H(+), using a mechani...

متن کامل

Topology of allosteric regulation of lactose permease.

Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding i...

متن کامل

Crystal structure of a LacY-nanobody complex in a periplasmic-open conformation.

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane protein, catalyzes galactoside-H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a mutant in an outward (periplasmic)-open conformation to stabilize thi...

متن کامل

Mutations in the lacY gene of Escherichia coli define functional organization of lactose permease.

Mutations in the lacY gene of Escherichia coli have been used to analyze the functional organization of lactose permease. Deletions suggest that the NH2 terminus of lactose permease is not essential and can be replaced by residues of the cytoplasmic enzyme beta-galactosidase. Negative dominant mutations in the lacY gene can be explained by the assumption that membrane-associated lactose permeas...

متن کامل

Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis.

Lactobacillus brevis accumulates lactose and nonmetabolizable lactose analogues via sugar/H+ symport, but addition of glucose to the extracellular medium results in rapid efflux of the free sugar from the cells due to the uncoupling of sugar transport from proton transport. By using vesicles of L. brevis cells, we recently showed that these regulatory/effects could be attributed to the metaboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 55 42  شماره 

صفحات  -

تاریخ انتشار 2016